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1. Introduction.
Cell replacement therapy (CRT) is a therapeutic strategy that involves the
transplantation of functional cells or tissues to replace or repair damaged or diseased
cells in the body (1, 2). Generation of cells for CRT requires multi-factorial protocols
that can vary in efficiency, scalability, and robustness (2, 3). CRT protocols span a large
combinatorial search space, which can be optimized using data-driven approaches
supported by formal methods of machine learning (ML) (4, 5).

A central data concept for CRT protocol optimization is the digital twin of embryo
development and in vitro differentiation. A digital twin is a computational replica of a
biological entity, which guides decision-making (6, 7). For CRT, digital twins are
constructed from data-rich sources on embryos and from cells at stages of
differentiation in a dish, primarily single-cell RNA sequencing augmented with extensive
auxiliary information (8–14). Embryo digital twins serve two purposes: (1) they establish
strong priors on the protocol search space, and (2) they establish a ground truth for the
identity and composition of cells at every stage of the protocols. These together
enable: rapidly identifying novel protocols for generating new cell types; discovering
new regulators of cell differentiation; and carrying out rapid CRT protocol optimization
cycles.

https://paperpile.com/c/d12VMC/sVGM+DBCz
https://paperpile.com/c/d12VMC/DBCz+ovxI
https://paperpile.com/c/d12VMC/nD7v+BbKg
https://paperpile.com/c/d12VMC/7sUf+LkJa
https://paperpile.com/c/d12VMC/0H1G+FXK2+IF1L+pxdo+Sl65+wVmc+T1lL


This white paper discusses the state-of-the-art in digital twin construction, distills the
general use-cases, surveys case-studies from the literature on data-driven CRT
protocol optimization, and identifies immediate priorities that position digital twins as a
pivotal tool in the future of CRT.

2. Motivation: discovering and optimizing in vitro differentiation protocols for
CRT.
The concept of using stem cells to generate cells for therapeutic purposes has its roots
in the mid 20th century. It involves solving (at least) two challenges: (1) generating
pluripotent stem cells; and then (2) converting them into desired mature cell types at
scale, with high purity, and reliably. The first challenge of generating stem cells is now
sufficiently solved (15). The second class problem must be solved anew for every target
cell type. There are hundreds of distinct cell types, and many have specialized sub-sets,
meaning that there are likely thousands of mature end-points, each requiring a distinct
protocol (2, 3, 16). “Digital twins” represent an analytical framework for addressing this
challenge systematically as discussed here. We note also that there exist additional
challenges in delivering cell types and ensuring successful engraftment, which are not
discussed in this white paper.

Generating stem cells. Although not the focus of this white paper, we briefly mention key
milestones leading to availability of stem cells as a resource for CRT. The idea of
harnessing stem cells for therapy arose in the mid-20th with successes in transplanting
hematopoietic stem cells and skin grafts. The idea of generating new cells from CRT
was galvanized by the advent of embryonic stem cell research in 1980s and 1990s: the
first isolation of embryonic stem cells from mice was achieved in 1981 (17), and in the
late 1990s there was a significant breakthrough with the successful generation of
human embryonic stem cells (hESCs) (18). In 2006, Shinya Yamanaka showed that
adult cells could be reprogrammed into induced pluripotent stem cells (iPSCs) (19),
offering a way to create patient-specific cells and to establish banks of stem cells.
These breakthroughs established the raw substrate for cell replacement therapy.

Stem cell differentiation into mature cell types. Turning human embryonic stem cells
(hESCs) and induced pluripotent stem cells (iPSCs) into specific mature cell types for
cell replacement therapy involves a two major strategies (2, 3): (1) Guided
differentiation (GD), mimicking natural developmental processes that would normally
occur in embryos as cells progress from the early pluripotent state to a given tissue.
This can include adding specific growth factors and chemicals to the culture medium,
sequentially at defined doses for defined periods of time. And, (2) Direct programming
(DP), genetically manipulating cells in order to directly transition cells into the final
desired state.
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In both cases (GD and DP), the goal for CRT is to define a robust protocol that leads to
the desired terminal cell types at large scale, with minimal contaminants of unwanted
cell types, and with high reproducibility (3). A “protocol” is an instruction set fully
specifying the sequence of manipulations on cells that would be carried out in a GMP
facility to generate cells for therapeutic purposes.

Challenges in stem cell differentiation protocols. There are around 200 major cell types
in the human body, and many of these have highly specialized subsets that vary
between and within tissues. Several examples illustrate the scale of the challenge:

● There are multiple neuronal subsets, and current estimates from single cell
transcriptomic profiling suggest that these may number in the thousands.

● Goblet cells secrete mucins, and have very different mucin production and
auxiliary gene expression between different mucosal epithelial linings (airway,
gut, intestine).

● Fibroblasts are cells that support the mesenchymal extracellular matrix, and vary
considerably between niches.

● Epidermal cells (keratinocytes) give rise to skin with different mechanical
properties and thickness between different body regions (e.g. the palm vs the
back), and they retain their identity after grafting.

● Muscle satellite stem cells partially retain regional identity after transplantation
from one body region to the other.

These illustrative examples make clear that building a protocol to generate the correct
cell types has many potential end-points, and requires the ability to distinguish between
functional (desirable) and unwanted CRT products. That is - the overarching challenge
for CRT is to generate the right cell type, with minimal unwanted cell products (i.e. at
high purity), in large amounts, with minimal variation due to experimental process or
cell-of-origin (i.e. robustly), and at scale.

Several representative iPSC differentiation protocols makes clear the challenge and
opportunities of harnessing digital twins:

● A first protocol to differentiate iPSCs into muscle satellite stem cells (MSCs)
generated on-target cells with 25% purity (75% off-target cells), and the cells
have an immature (fetal) identity. Subsequent optimization using data underlying
the “digital twin” (discussed below) increased purity to 50%, and then 80% with
further protocol optimization (20).

● A first protocol to differentiate iPSCs into enameloblasts (cells that regenerate
the tooth enamel) was only made possible after analyzing data underlying the
“digital twin” (discussed below) (21).
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● Attempts to differentiate hematopoietic stem cells for bone marrow
transplantation using GD protocols gives rise to embryonic-like (yolk sac
primitive/definitive) cells with inability to engraft, and the generation of mature
cells currently requires simultaneous exogenous expression of seven transgenes
by DP, which raises safety and efficiency concerns (22, 23).

● Differentiation of iPSCs into beta cells for treatment of diabetic patients initially
gave rise to a large fraction of insulin-negative cells. The identity of these cells
and their subsequent depletion to increase purity of the resulting beta cell islets
was enabled by analysis via scRNA-Seq, using data underlying the “digital twin”
(24).

● Attempts to generate hepatocytes (liver cells) from iPSCs have not yet been
successful (25), despite a clear clinical for liver transplants.

3. Digital twins: concept and data sources.
Digital twins offer a data-driven approach to the task of protocol discovery and
optimization. The digital twin of an embryo is a data-rich representation of the
composition and organization of an embryo as it transitions from pluripotency to the
formation of mature cell types. The digital twin of in vitro differentiation is a similar
representation of cells grown in a dish as they transition from pluripotency under a
defined GD or DP protocol. Such representations identify likely treatments, and offer a
ground-truth against which to compare existing protocols.

The ideal entity. A digital twin should represent a description of embryos and cells that
generate hypotheses for guiding cells to mature end-states and for comparing
generated cells to those found in embryos. A “complete” digital twin is currently an
idealization that is not yet possible to reach: a full (but impractical) catalog of molecular
composition would include transcriptome (mRNA), proteome, protein modifications (e.g.
phospho-proteome), lipids, metabolites, genome epigenetic state, genome 3D
organization, mechanical forces acting on cells, extracellular matrix composition and
organization, the 3D organization of a tissue, and the milieu of extra-cellular signaling
ligands that act on cells. It would also allow querying relationships between these and
provide predictions for dynamics and the effect of treatments on cells. In practice, the
amount of data that can be generated falls short of such a complete description, but the
current state-of-the-art is already sufficient to empower protocol optimization [multiple
examples – (21, 26–30)]. Technical advances continue to extend the data modalities
available for digital twin construction (31, 32).

Realization of digital twin embryos. Today, there are multiple data sources that should
support digital twin embryo construction:
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1. Single cell genomics: single cell RNA sequencing (scRNA-Seq) gives
information on the genes that are expressed in every cell in the embryo over
time. scRNA-Seq is the most robust method to produce high-quality data on the
state of cells. scRNA-Seq also enables establishing dynamic relationships
between embryonic cell states, by capturing cells at transitional stages that form
a continuum of states. scRNA-Seq data has been used to generate “single cell
atlases” of embryo development. These atlases establish a backbone for digital
twins. Other single cell information can be used to augment scRNA-Seq,
including information on chromatin accessibility (scATAC), and partial information
on protein expression. These data alone do not form a “digital twin” as they
require extensive expert domain knowledge to interpret. An important
consideration in digital twin construction is the need for dense time-series, which
can track dynamic changes in cells from pluripotency to the formation of mature
cell types (9, 10, 13, 33).

2. Pathway databases: The academic literature has been curated into several
widely-used databases that identify gene sets associated with specific molecular
functions and signaling pathways. These include GO, REACTOME, KEGG.
These databases alone have been used to empower inference of pathway
activity from gene expression in scRNA-Seq atlases, because signaling ligands
acting on cells will leave transcriptional signatures unique to different ligands that
can be interpreted using these databases (34). Similar approaches have used
these databases to infer metabolic state from scRNA-Seq data (35). These
databases enable some limited interpretation of scRNA-Seq databases, although
with considerable false-positives because the nature of database construction
was never intended for inference.

3. Gene expression databases: Public repositories of gene expression data (GEO
(36), EBI Expression Atlas (37)) are large collections of unrelated studies, each
associated with a publication. These studies make a crucial link between expert
domain knowledge (in the papers) and quantitative changes in gene expression
(in the repositories). Such information is ripe for mining in order to guide
interpretation and prediction on scRNA-Seq atlases.

4. Academic literature in developmental and stem cell biology: Beyond
repositories, the whole gamut of academic text on developmental biology and in
vitro stem cell differentiation contains decades of knowledge on regulators of
development. This large text resource is ripe for systematic mining by large
language models (LLMs) with training for specific tasks stem cell and
developmental biology (38), including (a) identifying progenitor cell states from
genes expressed; (b) identifying signaling pathways that have been
demonstrated to regulate the fate of progenitors and associating them with
specific outcomes; (c) identifying the natural micro-environment of progenitor
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cells including metabolites and mechanical cues; (d) generating bibliographies
supporting the LLM outputs.

4. Progress in digital twin construction.
To date, there has been progress on (1) single cell genomic representation of embryos,
and (2) utilizing pathway databases in the academic community. There are still major
gaps in (1) that are discussed below. Data sources (3) Gene Expression databases, and
(4) Academic journal papers have not yet been systematically integrated into digital
embryo efforts. The fact that domain expert knowledge has until recently been the
primary guide in establishing iPSC differentiation protocols argues very strongly that
these data sources represent a major untapped resource, which can dramatically
accelerate CRT protocol discovery and optimization. Their integration with scRNA-Seq
atlases will provide an empirical, relevant digital twin.

Single cell genomic representation of embryos. The first time-series digital twin
scRNA-Seq representations of vertebrate embryo development were published in 2018,
initially in zebrafish (10, 39) and frogs (9), which spanned the first day of life and tracked
cells from pluripotency up to the formation of tens of tissues. Representations of
mammalian embryos have followed with mouse in 2019 onwards (13, 40, 41). The initial
efforts collected information on 10,000s of cells across whole embryos, and now more
recent efforts have collected information on millions of cells in both zebrafish (42) and
mouse (43). Collection of data on human development has necessarily been more
challenging due to ethical considerations, and constructing time-series remains
particularly challenging because it is not possible to specifically target the collection of
samples at consistent time points (33). A first atlas covering some stages of human fetal
development has been published (44).

Single cell genomic representation of isolated tissues. As embryo development
proceeds the number of tissues and their complexity makes whole-organism analyses
both cost-prohibitive and technically difficult due to specific considerations in
dissociating and analyzing different tissues. As a result, efforts focusing on a single
tissue or cell type benefit from targeted analyses. These efforts follow the same exact
concepts as for a whole embryo, but manage to efficiently collect information on just a
subset of cells. There are many tissue-specific human developmental datasets available
in public repositories (45–48), although gaps exist for many tissues.

Outlook for digital twin data generation. Available resources provide an actionable
starting point for protocol optimization, but they are still patchy. They do not cover all
stages of development, do not cover all tissues, and do not capture natural variation. As
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we work to build digital twin databases that will further empower CRT protocol
development, we anticipate the following three priorities for data collection:

● Human digital twins by scRNA-Seq: ongoing effort will be needed to build up
data on human development for specific tissues of interest, making use of ethical
tissue sources. Recognizing human genetic diversity and natural variation, a
strong digital twin resource should collect data on tens to hundreds of samples,
so as to control for and leverage natural variation in the human population.
Academic community efforts will serve this purpose in part (33), and we
anticipate a need to generate our own data focusing intensely on somite-derived
tissues through in-house and sponsored research agreements.

● Multi-species digital twins: There is likely significant value in cross-species
comparisons because of the ability to collect embryonic tissues from
experimental model systems with high time resolution, systematically and
reproducibly. These include mouse, rabbit, pig, primates and more distant
vertebrates. Data is available for some of these organisms, albeit not spanning
the full range of time points needed to trace somite-derived tissues. For many
practical CRT applications it will be necessary to move towards much longer time
series covering later stages of tissue maturation. Data generation in some cases
is extremely accessible (e.g. zebrafish and mice). Putting data from these
organisms to work will also require establishing a computational platform to
simultaneously query information from orthologous tissues across species.

● “5D” digital twins: as spatially-resolved transcriptomics improves, considerable
efforts should be made to generate 5D digital twins - resolved across space (3D)
and time (the fourth dimension) and natural variation (the fifth dimension). This
will be a major effort given the need to collect and analyze tens to hundreds of
high-quality sections per time point. Such efforts will become accessible within
the next five years.

5. Analytical steps in digital twin construction by scRNA-Seq.
Digital twin construction from scRNA-Seq time series involves a series of computational
steps that initially require manual supervision and curation.

Dimensionality reduction and embedding. The first step involves data-filtering and
quality-control following standard scRNA-Seq data hygiene practices (49, 50).
Subsequently, unsupervised approaches are used for low-dimensional embedding and
clustering of scRNA-Seq data at each time point. These approaches can use linear
methods (Principal Component Analysis), or multi-layered encoding (variational
auto-encoders) that explicitly model noise in scRNA-Seq data.
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Cell type annotation. Cell transcriptomes are annotated such that each single cell
transcriptome is associated with a particular tissue and cell type. The process of
annotation initially involves expert input by developmental biologists, and in some cases
it can require input from experts that bring decades of expertise in specific tissues. As
data accumulate, this knowledge can be encoded efficiently by transfer learning
between data sets and applying pre-trained classifiers (51, 52).

Time-series integration. While cells are annotated, a next task is to integrate information
from multiple time-points together to form a time-series tracing the changes in cell state
over time. Such a time-series can be approximately represented by a tree that is rooted
in the pluripotent state. At present, time-series construction is carried out after data from
each time point is separately processed and annotated. The relationship between time
points modeled can be described using heuristic distance metrics, or by explicitly
defining a Transition Map between time points that attempts to model dynamic transition
probabilities between states (26, 53).

Manifold isolation. The construction of the digital twin embryo building on scRNA-Seq
data alone can be complicated by additional sources of variation that are partially or
completely independent of cell type differentiation. Cells in all tissues can exist in
different cell cycle phases, and express phase-specific genes that alter the distance
between cells in the embedding space. In addition, the same cell types can differentiate
in different parts of the embryo and thus express genes that vary in a spatially-defined
manner (“polytopy”). The same cells can also appear at different times, leading to
asynchrony that can lead to strong similarities between cells across time points. These
competing processes can lead to co-clustering or co-embedding of cells from different
locations or timing, leading to cell state representations that artificially combine gene
expression. Such problems are partly overcome by semi-supervised approaches that
enforce cell cycle-, spatial-, and timing- aware embeddings (50, 54, 55). At present,
methods for cell cycle deconvolution have been developed, building on databases
trained on cells in different cell cycle phases (56, 57). Similar approaches can be
considered for other sources of variation by developing appropriate databases for
anterior-posterior gradients in embryos, although these databases are still lacking.

Extrinsic environmental signature discovery. A goal for digital twins is to identify likely
changes in cues that can be used to guide cells towards desired differentiated
outcomes. Databases of transcriptional responses to signaling, along with information
on the receptors expressed by cells and their cognate ligands, can be used to generate
hypotheses for the signals acting in cells in the embryo, which may be useful candidates
for treatment in vitro. Similarly, variation in genes associated with cell metabolism can
serve to resolve changes in metabolic environments. It is possible that changes in
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mechanical environment similarly lead to stereotyped gene expression responses,
although such databases are still lacking. Several methods have been developed to
identify likely signals. These can be improved by generating tissue-specific databases
by treating tissues and stem cell derivatives with known signaling ligands at varying
doses. Such a database has been generated for one tissue (58), and the process can
be generalized.

Integration with literature and annotated gene expression repositories. Further
interpretation of scRNA-Seq data sets is carried out in light of the gamut of prior work.
Gene expression repositories represent a rich resource that links changes in gene
expression to specific experimental perturbations, across tens of thousands of studies.
In the past few years, manual curation of these data sets has enabled interpretation of
cell states in scRNA-Seq data [e.g. as in (59)]. Such analyses will benefit dramatically
from the use of large language models (LLMs) that can prioritize and then execute
relevant comparisons of scRNA-Seq atlases (60).

Outlook and priorities. As we work to build digital twin databases that will accelerate
CRT protocol development, we anticipate the following priorities for computational
methods and platforms:

● Digital twins are ripe for the establishment of generative models, which can
predict the next step of differentiation in one tissue and organism by training on
data from other tissues and organisms. Such generative models will serve as a
platform for trouble-shooting in vitro differentiation protocols.

● Given the commonality of development across vertebrates, a unified data
framework that encompasses digital twins across all organisms, time-series and
tissues will allow sharing of annotations, and bridging inevitable gaps in human
databases.

● The establishment of databases of signaling, metabolic and mechanical
responses across several tissues will establish the substrate for supervised ML
of signaling cues in digital twin embryos.

● Integrating aforementioned data sources (1)-(4). This can be realized through
LLMs trained on GEO metadata, large text repositories on stem cell and
developmental biology publications, the REACTOME/KEGG databases and with
the ability to evaluate scRNA-Seq embryo atlases. LLMs have already begun to
find use in biological data analysis [reviewed here (61)] but so far focused on
sequence-prediction tasks, or on annotation of scRNA-Seq data based on
transfer from other scRNA-Seq data sets (62). A specific challenge is to build on
expert knowledge embodied in literature to guide GD protocol optimization
prioritization of pathway activity and prediction of relevant perturbations. Such
prioritization currently relies on expert knowledge or piece-wise analyses using
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curated databases of signaling responses, which lack cell type-specific and
developmental context. We expect the prioritization task to benefit from use of
large language models (LLMs) that can relate scRNA-Seq atlases to past work.

6. Putting digital twins to work for CRT protocol discovery: case studies.
Several common steps used to date are reviewed in (29), with specific examples
discussed below:
Optimizing muscle satellite stem cell differentiation. Satellite cells (SCs) are a
population of cells able to regenerate damaged skeletal muscles. Patient derived SCs
lose their regenerative capacity when amplified in culture, motivating the need for SCs
derived from iPSCs for CRT. Initial protocols based on expert knowledge of the embryo
yielded SCs from iPSCs with a purity of 25% (20). Computational analysis of digital twin
scRNA-Seq revealed signatures of ligand-mediated signaling with different pathways
from those used in the established protocol. A resulting optimized protocol using these
predictions generates cultures containing up to ~75% human SCs. These SCs are
functional as they can regenerate injured muscles in mice and restore force production
as compared to uninjected controls. This work demonstrates the utility of digital twins for
optimization and establish a working CRT protocol for muscle stem cell therapy with
potential application to diseases such as Duchenne Muscular Dystrophy.

Developing protocols for brown adipose tissue differentiation. This case study illustrates
protocol discovery via a digital twin. Brown adipocytes (BAs) are a potential source of
cells for treating metabolic diseases, including type 2 diabetes. In recent work, a
protocol was developed to differentiate iPSCs through paraxial mesoderm progenitors,
into BAs. To optimize protocols for BA production, a digital embryo scRNA-Seq
time-series was first generated for relevant tissues in mouse embryos at gestational
days E13.5, E14.5, and E15.5. This mapping identified a previously unrecognized
population of BA precursors expressing the transcription factor GATA6. Armed with this
knowledge, iPSC differentiation protocols could target generation of this intermediate
state, and successfully identified conditions to generate these cells from paraxial
mesoderm precursors differentiated in vitro from hPSCs by modulating the signaling
pathways identified in the digital embryo scRNA-Seq data. These precursors could in
turn be efficiently converted into functional brown adipocytes which can respond to
adrenergic stimuli by increasing their metabolism resulting in heat production.

Developing protocols for tooth enamel differentiation. This case study illustrates a
second example of protocol discovery via a digital twin. Tooth enamel is gradually
damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack
of a specialized cell type - the ameloblast - which disappears once teeth erupt (i.e.
emerge). By establishing an scRNA-seq and spatially-resolved atlas of the developing
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human tooth and using it to prioritize signaling pathways, Ref. (21) were able to
generate human ameloblasts in vitro from iPSCs. They showed that the resulting AMs
matured to give rise to mineralized structure in vivo, suggesting a therapeutic strategy
for restoring enamel.

Towards protocols for regenerating visceral organs with iPSC derivatives. This case
study illustrates a third example of protocol discovery via a digital twin. Visceral organs,
such as the lungs, stomach and liver, are derived from the fetal foregut through a series
of inductive interactions between the definitive endoderm (DE) and the surrounding
splanchnic mesoderm (SM). To correctly generate such tissues in vitro, a goal is to
generate SM subtypes from human pluripotent stem cells (hPSCs), which has been
elusive. Ref. (27) used scRNA-Seq to generate a high-resolution cell state map of the
embryonic mouse foregut. This digital twin analysis identified a diversity of SM cell types
that develop in close register with different organ-specific epithelia. Leveraging this
analysis, they were able to prioritize protocols that generated different SM subtypes
from iPSCs.

7. Iterative GD and DP protocol optimization guided by machine-learning.
The previous sections have focused particularly on generation of a digital twin of natural
embryo development, as a constraint and ground-truth for on iPSC differentiation
protocols. Building such a twin then requires the ability to carry out rapid rounds of
protocol optimization.

DP protocol optimization. Direct programming protocols rely on combinatorial
expression of transgenes that result in iPSCs entering a final differentiated state. DP
protocols are extremely amenable to very high-throughput cycles of optimization by
introducing random pools of transgenes (typically transcription factors, or TFs) into cells,
and then carrying out scRNA-Seq combined with perturbation detection at the single cell
level (PERTURB-SEQ) in order to identify particular combinations of TFs that drive cells
towards desired outcomes. Because at least tens of thousands of TF combinations can
be evaluated in parallel, it becomes possible to carry out iterative learning (63). Thus,
DP protocol optimization is extremely well suited for ML-guided iterative learning. A
downside is that DP protocols have not yet been demonstrated to have high efficiency,
scalability and to yield functional products, and the introduction of multiple transgenes
may potentially demand further stringency in consideration to safety.

GD protocol optimization. GD protocols require the application of sequential treatments
to cells (metabolic conditions, media, growth factors, cytokines and small molecules).
As such they cannot be simply evaluated in massively-parallel pooled formats. The use
of industry-standard liquid-handling robotics can be used to establish large-scale
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plate-based screens, where every well in a plate represents a different condition for
optimization. For such approaches, there is a trade-off between the speed of iteration
and the number of conditions that can be practically realized. Overall speed is
accelerated by breaking down full GD protocols into steps that cover 1-2 days of
differentiation, and then optimizing each step in isolation. The use of fluorescent
reporters integrated into iPSC lines enables rapid read-out of changes to protocol
efficiency as a function of defined conditions. The choice of reporters are informed by
the embryo digital twin.With minimal effort, hundreds of conditions can be evaluated in
each iteration. The use of combinatorial labeling can increase this into the thousands
with simple experimental designs (64), and these may be turned into massively-parallel
approaches by split-and-pool of iPSC cultured encapsulated into transferable
micro-particles [combining (64) and (65)]. Formal machine-learning here offers
approaches to systematically design and improve experiments by defining appropriate
(1) cost functions (reflecting protocol yield and efficiency); and (2) policy function for
exploit-explore of new conditions in subsequent iterations. Such an approach
implementing Gaussian Process regression has been realized at a small scale to
optimize of iPSC differentiation into retinal pigmented epithelium (RPE) (5).
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